On isometries of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains

نویسندگان

  • HARISH SESHADRI
  • KAUSHAL VERMA
چکیده

Let 1 and 2 be strongly pseudoconvex domains in Cn and f : 1 → 2 an isometry for the Kobayashi or Carathéodory metrics. Suppose that f extends as a C1 map to ̄1. We then prove that f |∂ 1 : ∂ 1 → ∂ 2 is a CR or anti-CR diffeomorphism. It follows that 1 and 2 must be biholomorphic or anti-biholomorphic. Mathematics Subject Classification (2000): 32F45 (primary); 32Q45 (secondary).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison between the Kobayashi and Carathéodory Distances on Strongly Pseudoconvex Bounded Domains in C"

In this paper we prove that the ratio between the Carathéodory distance and the Kobayashi distance in a strongly pseudoconvex bounded domain in C" is arbitrarily close to 1 whenever at least one of the points is sufficiently near the boundary.

متن کامل

On Isometries of Intrinsic Metrics in Complex Analysis

We study isometries of the Kobayashi and Carathéodory metrics on strongly pseudoconvex and strongly convex domains in C and prove: (i) Let Ω1 and Ω2 be strongly pseudoconvex domains in C and f : Ω1 → Ω2 an isometry. Suppose that f extends as a C map to Ω̄1. Then f |∂Ω1 : ∂Ω1 → ∂Ω2 is a CR or anti-CR diffeomorphism. Hence it follows that Ω1 and Ω2 must be biholomorphic or anti-biholomorphic. (ii)...

متن کامل

Conformal equivalence of visual metrics in pseudoconvex domains

We refine estimates introduced by Balogh and Bonk, to show that the boundary extensions of isometries between smooth strongly pseudoconvex domains in C are conformal with respect to the sub-Riemannian metric induced by the Levi form. As a corollary we obtain an alternative proof of a result of Fefferman on smooth extensions of biholomorphic mappings between pseudoconvex domains. The proofs are ...

متن کامل

On the Holomorphicity of Isometries of Intrinsic Metrics in Complex Analysis

Let Ω1 and Ω2 be strongly pseudoconvex domains in C and f : Ω1 → Ω2 an isometry for the Kobayashi or Carathéodory metrics. Suppose that f extends as a C map to Ω̄1. We then prove that f |∂Ω1 : ∂Ω1 → ∂Ω2 is a CR or anti-CR diffeomorphism. It follows that Ω1 and Ω2 must be biholomorphic or anti-biholomorphic. The main tool is a metric version of the Pinchuk rescaling technique.

متن کامل

Estimates of Invariant Metrics on Pseudoconvex Domains near Boundaries with Constant Levi Ranks

Estimates of the Bergman kernel and the Bergman and Kobayashi metrics on pseudoconvex domains near boundaries with constant Levi ranks are given. Mathematics Subject Classification (2000): 32F45; 32T27.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011